Canonical almost complex structures on ACH Einstein manifolds
نویسندگان
چکیده
On asymptotically complex hyperbolic (ACH) Einstein manifolds, we consider a certain variational problem for almost structures compatible with the metric, which linearized Euler-Lagrange equation at K\"ahler-Einstein is given by Dolbeault Laplacian acting on $(0,1)$-forms values in holomorphic tangent bundle. A deformation result of ACH metrics associated critical this given. It also shown that asymptotic expansion structure determined induced (possibly non-integrable) CR boundary infinity up to order.
منابع مشابه
Stably and Almost Complex Structures on Bounded Flag Manifolds
We study the enumeration problem of stably complex structures on bounded flag manifolds arising from omniorientations, and determine those induced by almost complex structures. We also enumerate the stably complex structures on these manifolds which bound, therefore representing zero in the complex cobordism ring Ω∗ .
متن کاملAlmost Complex and Almost Product Einstein Manifolds from a Variational Principle
It is shown that the first order (Palatini) variational principle for a generic nonlinear metric-affine Lagrangian depending on the (symmetrized) Ricci square invariant leads to an almost-product Einstein structure or to an almost-complex anti-Hermitian Einstein structure on a manifold. It is proved that a real anti-Hermitian metric on a complex manifold satisfies the Kähler condition on the sa...
متن کاملPotential Theory on Almost Complex Manifolds
Pseudo-holomorphic curves on almost complex manifolds have been much more intensely studied than their “dual” objects, the plurisubharmonic functions. These functions are standardly defined by requiring that the restriction to each pseudo-holomorphic curve be subharmonic. In this paper subharmonic functions are defined by applying the viscosity approach to a version of the complex hessian which...
متن کاملAlmost Complex Structures on the Cotangent Bundle
We construct some lift of an almost complex structure to the cotangent bundle, using a connection on the base manifold. This unifies the complete lift defined by I.Satô and the horizontal lift introduced by S.Ishihara and K.Yano. We study some geometric properties of this lift and its compatibility with symplectic forms on the cotangent bundle.
متن کاملEinstein - Weyl structures on complex manifolds and conformal version of Monge - Ampère equation
A Hermitian Einstein-Weyl manifold is a complex manifold admitting a Ricci-flat Kähler covering M̃ , with the deck transform acting on M̃ by homotheties. If compact, it admits a canonical Vaisman metric, due to Gauduchon. We show that a Hermitian Einstein-Weyl structure on a compact complex manifold is determined by its volume form. This result is a conformal analogue of Calabi’s theorem stating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2021
ISSN: ['1945-5844', '0030-8730']
DOI: https://doi.org/10.2140/pjm.2021.314.375